Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial.

JAMA network open. 2022;5(1):e2144279

Plain language summary

Older adults are the fastest growing age group in the world. As we age, we tend to lose muscle mass and strength which has consequences. Studies have shown that mitochondrial dysfunction plays an important part in age-related diseases. A reduction in the cells ability to dispose of its dysfunctional mitochondria (mitophagy) contributes to poor mitochondrial quality. Urolithin A is a natural food metabolite of the gut microbiome and has been shown to boost mitochondrial health by triggering mitophagy in both preclinical models of aging and in older adults. In this double-blind, placebo-controlled randomized clinical trial, 66 older adults were given either 1000mg of urolithin A or a placebo for 4 months. Muscle fatigue tests and plasma analysis of biomarkers were assessed at baseline, 2 months, and 4 months. Six-minute walk distance and maximal ATP production were assessed using magnetic resonance spectroscopy at baseline and at the end of study at 4 months. This study found that the improvements in the 6-minute walk distance and maximal ATP production in hand muscles were not significant for urolithin A. However, long-term supplementation with urolithin A significantly enhanced skeletal muscle endurance and improved the metabolic markers of mitochondrial function in older adults. This trial suggests that urolithin A may be a promising approach to counteract age-associated muscle decline. Future study is needed to confirm the role of urolithin A supplementation in healthy aging.

Abstract

Importance: Aging is associated with a decline in mitochondrial function and reduced exercise capacity. Urolithin A is a natural gut microbiome-derived food metabolite that has been shown to stimulate mitophagy and improve muscle function in older animals and to induce mitochondrial gene expression in older humans. Objective: To investigate whether oral administration of urolithin A improved the 6-minute walk distance, muscle endurance in hand and leg muscles, and biomarkers associated with mitochondrial and cellular health. Design, Setting, and Participants: This double-blind, placebo-controlled randomized clinical trial in adults aged 65 to 90 years was conducted at a medical center and a cancer research center in Seattle, Washington, from March 1, 2018, to July 30, 2020. Muscle fatigue tests and plasma analysis of biomarkers were assessed at baseline, 2 months, and 4 months. Six-minute walk distance and maximal ATP production were assessed using magnetic resonance spectroscopy at baseline and at the end of study at 4 months. The analysis used an intention-to-treat approach. Interventions: Participants were randomized to receive daily oral supplementation with either 1000 mg urolithin A or placebo for 4 months. Main Outcomes and Measures: The primary end point was change from baseline in the 6-minute walk distance and change from baseline to 4 months in maximal ATP production in the hand skeletal muscle. The secondary end points were change in muscle endurance of 2 skeletal muscles (tibialis anterior [TA] in the leg and first dorsal interosseus [FDI] in the hand). Cellular health biomarkers were investigated via plasma metabolomics. Adverse events were recorded and compared between the 2 groups during the intervention period. Results: A total of 66 participants were randomized to either the urolithin A (n = 33) or the placebo (n = 33) intervention group. These participants had a mean (SD) age of 71.7 (4.94) years, were predominantly women (50 [75.8%]), and were all White individuals. Urolithin A, compared with placebo, significantly improved muscle endurance (ie, increase in the number of muscle contractions until fatigue from baseline) in the FDI and TA at 2 months (urolithin A: FDI, 95.3 [115.5] and TA, 41.4 [65.5]; placebo: FDI, 11.6 [147.4] and TA, 5.7 [127.1]). Plasma levels of several acylcarnitines, ceramides, and C-reactive protein were decreased by urolithin A, compared with placebo, at 4 months (baseline vs 4 mo: urolithin A, 2.14 [2.15] vs 2.07 [1.46]; placebo, 2.17 [2.52] vs 2.65 [1.86]). The mean (SD) increase from baseline in the 6-minute walk distance was 60.8 (67.2) m in the urolithin A group and 42.5 (73.3) m in the placebo group. The mean (SD) change from baseline to 4 months in maximal ATP production in the FDI was 0.07 (0.23) mM/s in the urolithin A group and 0.06 (0.20) mM/s in the placebo group; for the TA, it was -0.03 (0.10) mM/s in the urolithin A group and 0.03 (0.10) mM/s in the placebo group. These results showed no significant improvement with urolithin A supplementation compared with placebo. No statistical differences in adverse events were observed between the 2 groups. Conclusions and Relevance: This randomized clinical trial found that urolithin A supplementation was safe and well tolerated in the assessed population. Although the improvements in the 6-minute walk distance and maximal ATP production in the hand muscle were not significant in the urolithin A group vs the placebo group, long-term urolithin A supplementation was beneficial for muscle endurance and plasma biomarkers, suggesting that urolithin A may counteract age-associated muscle decline; however, future work is needed to confirm this finding. Trial Registration: ClinicalTrials.gov Identifier: NCT03283462.

Lifestyle medicine

Fundamental Clinical Imbalances : Detoxification and biotransformational ; Structural
Patient Centred Factors : Mediators/Mitochondria
Environmental Inputs : Nutrients ; Physical exercise
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Blood
Bioactive Substances : Urolithin A

Methodological quality

Jadad score : 5
Allocation concealment : Yes

Metadata

Nutrition Evidence keywords : Mitochondria ; Ageing ; Exercise ; Muscle